NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes.

نویسندگان

  • L A Del Río
  • V M Fernández
  • F L Rupérez
  • L M Sandalio
  • J M Palma
چکیده

In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O(2) (-)) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O(2) (-) radicals. In the soluble fractions of peroxisomes, no generation of O(2) (-) radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O(2) (-) generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superoxide free radicals are produced in glyoxysomes.

The production of superoxide free radicals in pellet and supernatant fractions of glyoxysomes, specialized plant peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons, was investigated. Upon inhibition of the endogenous superoxide dismutase, xanthine, and hypoxanthine induced in glyoxysomal supernatants the generation of O(2) (-) radicals and this was inhibited by allopurinol. In ...

متن کامل

Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation.

The production of superoxide radicals (O2(-).) and the activities of ferricyanide reductase and cytochrome c reductase were investigated in peroxisomal membranes from pea (Pisum sativum L.) leaves using NADH and NADPH as electron donors. The generation of O2(-). by peroxisomal membranes was also assayed in native polyacrylamide gels using an in situ staining method with NitroBlue Tetrazolium (N...

متن کامل

Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves

We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate...

متن کامل

ROS Generation in Peroxisomes and its Role in Cell Signaling.

In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and pl...

متن کامل

Reactive oxygen species-induced impairment of endothelium-dependent relaxations in rat aortic rings: protection by methanolic extracts of Phoebe grandis.

Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 1989